

Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN

Pró-Reitoria de Ensino de Graduação - PROEG

Home Page: http://www.uern.br E-mail: proeg@uern.br

CURSO: Licenciatura em Química

PROGRAMA GERAL DO COMPONENTE CURRICULAR- PGCC¹

I IDENTIFICAÇÃO DO COMPONENTE CURRICULAR

1.1 Natureza do componente: (x)Disciplina ()Atividades da prática² ()Estágio Supervisionado

Obrigatório ()Trabalho de Conclusão de Curso - TCC

1.2 Nome do componente: Equilíbrio Químico e Soluções

CÓDIGO: 0804057-1 **CRÉDITOS:** 07 CARGA HORÁRIA: 105 Pré-Requisito: Termodinâmica Básica Código: 0804055-1 C/H 75 Período: IV Turno: Diurno Ano/Semestre: Curso: Licenciatura em Química

Professor (a): Salah Mohamed Yusef

II EMENTA

Energia Livre. Espontaneidade e Equilíbrio. Equilíbrio químico em sistema de composição variável. Equilíbrio de Fases em sistemas simples. A regra das fases. Solução ideal e as propriedades coligativas. Soluções com mais de um componente volátil. Equilíbrio em sistemas não ideais. Prática como componente curricular.

III OBJETIVOS

Possibilitar ao aluno a compreensão dos processos termodinâmicos, relativos a: equilíbrio e potencial químico ideais e reais

IV CONTEÚDO

Espontaneidade e Equilíbrio

As condições gerais do equilíbrio

Condições de equilíbrio e espontaneidade sob restrições

Forças responsáveis pelas transformações naturais

As equações fundamentais da Termodinâmica

A Equação de estado de equilíbrio

As propriedades de helmholtz e de Gibbs. A energia de Gibbs de gases reais.

A dependência da energia de Gibbs com a Temperatura

Sistema de Composição variável – Equilíbrio Químico

A equação fundamental. As propriedades de µi. A energia de Gibbs

Mistura. O potencial Químico de um gás ideal puro. Potencial químico de um gás ideal numa mistura de gases ideais.

Equilíbrio químico numa mistura.

O comportamento de G. Como uma função de avanço

Equilíbrio químico na mistura de gases ideais; na mistura de gases reais. As constantes Kx e

Energia de Gibbs padrão de formação. A dependência da constante de equilíbrio com a

temperatura. Equilíbrio entre gases idéias e fases condensadas puras.

Dependência de outras funções termodinâmicas com a composição. As quantidades parciais molares e as regras de adição. A equação de Gibbs-Duhem. Quantidade parciais molares em misturas de gases ideais.

Equilíbrio de fases em sistema simples a regra das fases

A condição de Equilibrio. Estabilidade das fases formadas por uma substancia pura. Variaçãodas curvas __= f(T) com a pressão. A equação de Clapeyron. Efeito da pressão sobre a pressão de vapor. A regra das fases. O problema dos componentes.

A solução ideal e as propriedades Coligativas

Tipos de solução. Definição de solução ideal. A forma analitica do potencial quimico na solução liquida ideal.

Potencial Químico de um soluto numa solução binária idel

Propriedades coligativas. O abaixamento crioscopico

Elevação ebuiloscópica. Pressão osmótica

Mais de um Componente Volátil

Caracteristica gerais da solução ideal. O potencial em soluções ideais. Soluções binária. A egra da alavanca.

Mudanças de estado, quando se reduz a pressão isotermicamente. Diagrama temperaturacomposição. Mudança de estado com o aumento da temperatura.

Destilação fracionada. Azeótopos. A solução diluida ideal. Os potenciais quimicos na solução diluída ideal

A lei de Henry e a solubilidade dos gases. Distribuição de um soluto entre dois solventes. Equilibrio químico na solução ideal

Equilíbrio em sistema não ideais

O conceito de atividade. O sistema de atividade racionais

propriedades coligativas. O sistema prático. Atividade e Equilíbrio atividade em solução eletroliticas

A teoria de Debye – Huckei sobre a estruturas daa soluções iônicas diluidas. Equilíbrio em soluções iônicas.P

V METODOLOGIA

Será desenvolvida a partir de aulas expositivas, aulas práticas e resolução de exercícios em sala de aula. além de seminários ministrados pelos alunos.

VI PROCEDIMENTOS DE AVALIAÇÃO DA APRENDIZAGEM

As avaliações serão realizadas em regime contínuo pelo acompanhamento do desempenho do aluno e avaliação da aquisição conhecimentos. Serão realizadas provas escritas, as quais individuais, de caráter subjetivo e ou objetivo, e relatórios das aulas práticas. Os exercícios a serem contabilizados serão feitos em datas não determinadas.

VII REFERÊNCIAS

Bibliografia básica

ATKINS, P. W. Físico-Química. 8a ed. Rio de Janeiro: LTC, 2008. v1 e v2.

MOORE, W. J. Físico Química. 1a ed. São Paulo: Edgard Blucher Ltda, 1976. v2.

CASTELLAN, G. W.; Físico Química. 1a ed. Rio de Janeiro: Livros Técnicos e Científicos

Editora S.A, 1986. v1.	
BALL, D.W. Físico-química. 1a ed. São Paulo: Thomson Learning, 2006. v1 e v2.	
PILLA L.; Físico-Química. São Paulo: Pearson Makron Books, 2002. v1 e v2.	
VIII OUTRAS OBSERVAÇÕES	
Aprovado pela Comissão do PPC em//	
Professor(a)	Presidente da Comissão do PPC